p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C42.201D4, C23.722C24, C22.4952+ 1+4, C22.3782- 1+4, C42⋊8C4.50C2, (C2×C42).734C22, (C22×C4).233C23, C22.454(C22×D4), C2.C42.425C22, C23.83C23.47C2, C23.81C23.50C2, C2.6(C22.58C24), C2.71(C23.38C23), C2.61(C22.57C24), C2.60(C22.31C24), (C2×C4).439(C2×D4), (C2×C4⋊C4).531C22, (C2×C42.C2).29C2, SmallGroup(128,1554)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.201D4
G = < a,b,c,d | a4=b4=c4=1, d2=b2, ab=ba, cac-1=a-1, dad-1=ab2, cbc-1=a2b-1, dbd-1=a2b, dcd-1=a2c-1 >
Subgroups: 324 in 190 conjugacy classes, 92 normal (10 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, C23, C42, C4⋊C4, C22×C4, C22×C4, C2.C42, C2×C42, C2×C4⋊C4, C42.C2, C42⋊8C4, C23.81C23, C23.83C23, C2×C42.C2, C42.201D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, 2- 1+4, C23.38C23, C22.31C24, C22.57C24, C22.58C24, C42.201D4
Character table of C42.201D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | 4 | -4 | -4 | -4 | -4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from 2+ 1+4 |
ρ22 | 4 | -4 | -4 | 4 | -4 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ23 | 4 | -4 | 4 | 4 | -4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ24 | 4 | 4 | 4 | -4 | -4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ25 | 4 | -4 | -4 | -4 | 4 | 4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ26 | 4 | 4 | -4 | 4 | 4 | -4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 76 103 13)(2 73 104 14)(3 74 101 15)(4 75 102 16)(5 36 70 95)(6 33 71 96)(7 34 72 93)(8 35 69 94)(9 107 40 48)(10 108 37 45)(11 105 38 46)(12 106 39 47)(17 56 80 115)(18 53 77 116)(19 54 78 113)(20 55 79 114)(21 111 84 52)(22 112 81 49)(23 109 82 50)(24 110 83 51)(25 121 88 62)(26 122 85 63)(27 123 86 64)(28 124 87 61)(29 58 92 117)(30 59 89 118)(31 60 90 119)(32 57 91 120)(41 126 97 68)(42 127 98 65)(43 128 99 66)(44 125 100 67)
(1 33 9 65)(2 36 10 68)(3 35 11 67)(4 34 12 66)(5 106 97 75)(6 105 98 74)(7 108 99 73)(8 107 100 76)(13 69 48 44)(14 72 45 43)(15 71 46 42)(16 70 47 41)(17 117 52 86)(18 120 49 85)(19 119 50 88)(20 118 51 87)(21 121 56 90)(22 124 53 89)(23 123 54 92)(24 122 55 91)(25 78 60 109)(26 77 57 112)(27 80 58 111)(28 79 59 110)(29 82 64 113)(30 81 61 116)(31 84 62 115)(32 83 63 114)(37 126 104 95)(38 125 101 94)(39 128 102 93)(40 127 103 96)
(1 119 103 60)(2 57 104 120)(3 117 101 58)(4 59 102 118)(5 53 70 116)(6 113 71 54)(7 55 72 114)(8 115 69 56)(9 88 40 25)(10 26 37 85)(11 86 38 27)(12 28 39 87)(13 92 76 29)(14 30 73 89)(15 90 74 31)(16 32 75 91)(17 96 80 33)(18 34 77 93)(19 94 78 35)(20 36 79 95)(21 100 84 44)(22 41 81 97)(23 98 82 42)(24 43 83 99)(45 61 108 124)(46 121 105 62)(47 63 106 122)(48 123 107 64)(49 66 112 128)(50 125 109 67)(51 68 110 126)(52 127 111 65)
G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,76,103,13)(2,73,104,14)(3,74,101,15)(4,75,102,16)(5,36,70,95)(6,33,71,96)(7,34,72,93)(8,35,69,94)(9,107,40,48)(10,108,37,45)(11,105,38,46)(12,106,39,47)(17,56,80,115)(18,53,77,116)(19,54,78,113)(20,55,79,114)(21,111,84,52)(22,112,81,49)(23,109,82,50)(24,110,83,51)(25,121,88,62)(26,122,85,63)(27,123,86,64)(28,124,87,61)(29,58,92,117)(30,59,89,118)(31,60,90,119)(32,57,91,120)(41,126,97,68)(42,127,98,65)(43,128,99,66)(44,125,100,67), (1,33,9,65)(2,36,10,68)(3,35,11,67)(4,34,12,66)(5,106,97,75)(6,105,98,74)(7,108,99,73)(8,107,100,76)(13,69,48,44)(14,72,45,43)(15,71,46,42)(16,70,47,41)(17,117,52,86)(18,120,49,85)(19,119,50,88)(20,118,51,87)(21,121,56,90)(22,124,53,89)(23,123,54,92)(24,122,55,91)(25,78,60,109)(26,77,57,112)(27,80,58,111)(28,79,59,110)(29,82,64,113)(30,81,61,116)(31,84,62,115)(32,83,63,114)(37,126,104,95)(38,125,101,94)(39,128,102,93)(40,127,103,96), (1,119,103,60)(2,57,104,120)(3,117,101,58)(4,59,102,118)(5,53,70,116)(6,113,71,54)(7,55,72,114)(8,115,69,56)(9,88,40,25)(10,26,37,85)(11,86,38,27)(12,28,39,87)(13,92,76,29)(14,30,73,89)(15,90,74,31)(16,32,75,91)(17,96,80,33)(18,34,77,93)(19,94,78,35)(20,36,79,95)(21,100,84,44)(22,41,81,97)(23,98,82,42)(24,43,83,99)(45,61,108,124)(46,121,105,62)(47,63,106,122)(48,123,107,64)(49,66,112,128)(50,125,109,67)(51,68,110,126)(52,127,111,65)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,76,103,13)(2,73,104,14)(3,74,101,15)(4,75,102,16)(5,36,70,95)(6,33,71,96)(7,34,72,93)(8,35,69,94)(9,107,40,48)(10,108,37,45)(11,105,38,46)(12,106,39,47)(17,56,80,115)(18,53,77,116)(19,54,78,113)(20,55,79,114)(21,111,84,52)(22,112,81,49)(23,109,82,50)(24,110,83,51)(25,121,88,62)(26,122,85,63)(27,123,86,64)(28,124,87,61)(29,58,92,117)(30,59,89,118)(31,60,90,119)(32,57,91,120)(41,126,97,68)(42,127,98,65)(43,128,99,66)(44,125,100,67), (1,33,9,65)(2,36,10,68)(3,35,11,67)(4,34,12,66)(5,106,97,75)(6,105,98,74)(7,108,99,73)(8,107,100,76)(13,69,48,44)(14,72,45,43)(15,71,46,42)(16,70,47,41)(17,117,52,86)(18,120,49,85)(19,119,50,88)(20,118,51,87)(21,121,56,90)(22,124,53,89)(23,123,54,92)(24,122,55,91)(25,78,60,109)(26,77,57,112)(27,80,58,111)(28,79,59,110)(29,82,64,113)(30,81,61,116)(31,84,62,115)(32,83,63,114)(37,126,104,95)(38,125,101,94)(39,128,102,93)(40,127,103,96), (1,119,103,60)(2,57,104,120)(3,117,101,58)(4,59,102,118)(5,53,70,116)(6,113,71,54)(7,55,72,114)(8,115,69,56)(9,88,40,25)(10,26,37,85)(11,86,38,27)(12,28,39,87)(13,92,76,29)(14,30,73,89)(15,90,74,31)(16,32,75,91)(17,96,80,33)(18,34,77,93)(19,94,78,35)(20,36,79,95)(21,100,84,44)(22,41,81,97)(23,98,82,42)(24,43,83,99)(45,61,108,124)(46,121,105,62)(47,63,106,122)(48,123,107,64)(49,66,112,128)(50,125,109,67)(51,68,110,126)(52,127,111,65) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,76,103,13),(2,73,104,14),(3,74,101,15),(4,75,102,16),(5,36,70,95),(6,33,71,96),(7,34,72,93),(8,35,69,94),(9,107,40,48),(10,108,37,45),(11,105,38,46),(12,106,39,47),(17,56,80,115),(18,53,77,116),(19,54,78,113),(20,55,79,114),(21,111,84,52),(22,112,81,49),(23,109,82,50),(24,110,83,51),(25,121,88,62),(26,122,85,63),(27,123,86,64),(28,124,87,61),(29,58,92,117),(30,59,89,118),(31,60,90,119),(32,57,91,120),(41,126,97,68),(42,127,98,65),(43,128,99,66),(44,125,100,67)], [(1,33,9,65),(2,36,10,68),(3,35,11,67),(4,34,12,66),(5,106,97,75),(6,105,98,74),(7,108,99,73),(8,107,100,76),(13,69,48,44),(14,72,45,43),(15,71,46,42),(16,70,47,41),(17,117,52,86),(18,120,49,85),(19,119,50,88),(20,118,51,87),(21,121,56,90),(22,124,53,89),(23,123,54,92),(24,122,55,91),(25,78,60,109),(26,77,57,112),(27,80,58,111),(28,79,59,110),(29,82,64,113),(30,81,61,116),(31,84,62,115),(32,83,63,114),(37,126,104,95),(38,125,101,94),(39,128,102,93),(40,127,103,96)], [(1,119,103,60),(2,57,104,120),(3,117,101,58),(4,59,102,118),(5,53,70,116),(6,113,71,54),(7,55,72,114),(8,115,69,56),(9,88,40,25),(10,26,37,85),(11,86,38,27),(12,28,39,87),(13,92,76,29),(14,30,73,89),(15,90,74,31),(16,32,75,91),(17,96,80,33),(18,34,77,93),(19,94,78,35),(20,36,79,95),(21,100,84,44),(22,41,81,97),(23,98,82,42),(24,43,83,99),(45,61,108,124),(46,121,105,62),(47,63,106,122),(48,123,107,64),(49,66,112,128),(50,125,109,67),(51,68,110,126),(52,127,111,65)]])
Matrix representation of C42.201D4 ►in GL12(𝔽5)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 4 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 1 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 1 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 1 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 4 | 0 | 4 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 2 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 4 | 1 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 2 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 3 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 3 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 3 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 2 |
G:=sub<GL(12,GF(5))| [0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,1,1,0,0,0,0,0,0,0,0,1,3,4,4,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,4,0,0,0,0,0,0,0,0,0,4,4,2,0,0,0,0,0,0,0,0,3,1,2,1,0,0,0,0,0,0,0,0,4,3,3,4],[1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,2,1,3,3,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,4,0,0,0,0,0,0,0,0,0,1,4,2,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0],[0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,3,3,4,0,0,0,0,0,0,0,0,0,4,2,1,1,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,0,1,0,0,0,0,0,0,0,0,4,4,4,3,0,0,0,0,0,0,0,0,0,1,2,4,0,0,0,0,0,0,0,0,4,1,2,1],[0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,4,2,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,4,0,2,0,0,0,0,0,0,0,0,4,1,2,1,0,0,0,0,0,0,0,0,3,3,1,2,0,0,0,0,0,0,0,0,1,1,1,2] >;
C42.201D4 in GAP, Magma, Sage, TeX
C_4^2._{201}D_4
% in TeX
G:=Group("C4^2.201D4");
// GroupNames label
G:=SmallGroup(128,1554);
// by ID
G=gap.SmallGroup(128,1554);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,120,758,723,184,794,185,80]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=b^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^-1>;
// generators/relations
Export